A Basic AdaBoost Algorithm Implementation (MATLAB Source Code)
- Login to Download
- 1 Credits
Resource Overview
Detailed Documentation
Below is a basic MATLAB implementation of the AdaBoost algorithm:
function [H, alpha] = adaboost(X, Y, T)
% Initialize weight vector uniformly for all samples
N = size(X, 1);
W = ones(N, 1) / N;
% Store weak classifiers and their corresponding weights
H = cell(T, 1);
alpha = zeros(T, 1);
for t = 1:T
% Train a weak classifier (decision stump, SVM, etc.) using current sample weights
h = trainClassifier(X, Y, W);
% Calculate the weighted error rate of the weak classifier
epsilon = computeError(h, X, Y, W);
% Compute classifier weight using AdaBoost formula: alpha = 0.5*ln((1-epsilon)/epsilon)
alpha(t) = 0.5 * log((1 - epsilon) / epsilon);
% Update sample weights: increase weights for misclassified samples
W = updateWeights(h, X, Y, W, alpha(t));
% Store the trained weak classifier
H{t} = h;
end
end
function h = trainClassifier(X, Y, W)
% This function trains a base classifier (e.g., decision tree, SVM) using weighted samples
% Implementation typically involves finding the best feature threshold that minimizes weighted error
% Returns the trained weak classifier model
h = trainedClassifier;
end
function epsilon = computeError(h, X, Y, W)
% Calculate weighted classification error by comparing predictions with true labels
% Error is computed as sum of weights for misclassified samples
% Returns the weighted error rate
epsilon = error;
end
function W = updateWeights(h, X, Y, W, alpha)
% Update sample weights using exponential rule: W_i = W_i * exp(±alpha)
% Increase weights for misclassified samples, decrease for correctly classified ones
% Returns updated sample weight vector (normalized to sum to 1)
W = updatedWeights;
end
- Login to Download
- 1 Credits